Feedback Signals in Myelodysplastic Syndromes: Increased Self-Renewal of the Malignant Clone Suppresses Normal Hematopoiesis

نویسندگان

  • Thomas Walenda
  • Thomas Stiehl
  • Hanna Braun
  • Julia Fröbel
  • Anthony D. Ho
  • Thomas Schroeder
  • Tamme W. Goecke
  • Björn Rath
  • Ulrich Germing
  • Anna Marciniak-Czochra
  • Wolfgang Wagner
چکیده

Myelodysplastic syndromes (MDS) are triggered by an aberrant hematopoietic stem cell (HSC). It is, however, unclear how this clone interferes with physiologic blood formation. In this study, we followed the hypothesis that the MDS clone impinges on feedback signals for self-renewal and differentiation and thereby suppresses normal hematopoiesis. Based on the theory that the MDS clone affects feedback signals for self-renewal and differentiation and hence suppresses normal hematopoiesis, we have developed a mathematical model to simulate different modifications in MDS-initiating cells and systemic feedback signals during disease development. These simulations revealed that the disease initiating cells must have higher self-renewal rates than normal HSCs to outcompete normal hematopoiesis. We assumed that self-renewal is the default pathway of stem and progenitor cells which is down-regulated by an increasing number of primitive cells in the bone marrow niche--including the premature MDS cells. Furthermore, the proliferative signal is up-regulated by cytopenia. Overall, our model is compatible with clinically observed MDS development, even though a single mutation scenario is unlikely for real disease progression which is usually associated with complex clonal hierarchy. For experimental validation of systemic feedback signals, we analyzed the impact of MDS patient derived serum on hematopoietic progenitor cells in vitro: in fact, MDS serum slightly increased proliferation, whereas maintenance of primitive phenotype was reduced. However, MDS serum did not significantly affect colony forming unit (CFU) frequencies indicating that regulation of self-renewal may involve local signals from the niche. Taken together, we suggest that initial mutations in MDS particularly favor aberrant high self-renewal rates. Accumulation of primitive MDS cells in the bone marrow then interferes with feedback signals for normal hematopoiesis--which then results in cytopenia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New approaches to the treatment of myelodysplasia.

The therapeutic dilemma that confronts the management of patients with myelodysplastic syndromes (MDS) is illustrated by the absence of a Food and Drug Administration-approved agent with an indication for this disease. Clinical heterogeneity and inadequate understanding of the disease pathobiology have limited progress in the development of novel therapeutics. Preclinical investigations indicat...

متن کامل

Severe hypoxia selects hematopoietic progenitors with stem cell potential from primary Myelodysplastic syndrome bone marrow cell cultures

Myelodysplastic Syndromes (MDS) are clonal neoplasms where stem/progenitor cells endowed with self-renewal and capable of perpetuating the disease have been demonstrated. It is known that oxygen tension plays a key role in driving normal hematopoiesis and that hematopoietic stem cells are maintained in hypoxic areas of the bone marrow (BM). Hypoxia could also regulate leukemic/dysplastic hemato...

متن کامل

Effect of the nonpeptide thrombopoietin receptor agonist Eltrombopag on bone marrow cells from patients with acute myeloid leukemia and myelodysplastic syndrome.

Thrombocytopenia is a frequent symptom and clinical challenge in patients with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Eltrombopag is a small molecule thrombopoietin receptor agonist that might be a new option to treat thrombocytopenia in these diseases, provided that it does not stimulate malignant hematopoiesis. In this work, we studied the effects of Eltrombopag on p...

متن کامل

The molecular basis of myelodysplastic syndromes.

BACKGROUND AND OBJECTIVE The myelodysplastic syndromes comprise a heterogeneous group of neoplastic disorders characterized by ineffective hematopoiesis with an increased tendency to evolve to acute leukemia. Clinically, the common manifestations include peripheral blood cytopenias of one or more lineages and a normal to hyperplastic marrow. MDS has been defined on the basis of morphological cr...

متن کامل

Innate immune signaling in the myelodysplastic syndromes.

Myelodysplastic syndromes (MDS) are heterogeneous clonal hematologic malignancies characterized by cytopenias caused by ineffective hematopoiesis and propensity to progress to acute myeloid leukemia. Innate immunity provides immediate protection against pathogens by coordinating activation of signaling pathways in immune cells. Given the prominent role of the innate immune pathway in regulating...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2014